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Wayfinding: A method for the empirical evaluation of structural 

saliency using 3D Isovists 

The presence of locations that possess distinct spatial-cognitive features (salient 

landmarks) is a fundamental necessity for supporting navigation. Embedding 

formal or structural variability sufficient to create such landmark locations is 

therefore an important consideration in the design of large urban and architectural 

spaces. Despite the availability of diverse theories that seek to identify the 

characteristics of “a salient landmark”, relatively few experimental techniques are 

available to empirically evaluate saliency in a given architecture plan. This study 

is therefore motivated by the development of an ability to measure spatial 

distinctiveness during the architectural design and modelling process. The 

information from such an analysis can prove useful for evaluating the way in 

which a design provides support for wayfinding and spatial appeal. Statistical 

summaries obtained from the 3D isovists are compared using principal 

component analysis to differentiate monotonous regions from the more 

structurally distinct ones. The experiments reported in the paper demonstrate 

novel utilisation of the isovist concept to capture spatial properties and 

comparison of structural saliency amongst two well-known architectural designs. 

Central contributions of the paper include the novel experimentation technique of 

capturing and utilising 3D isovists, its interpretation and the quantitative 

methodology behind saliency computation.   

Keywords: 3D isovists; structural saliency; computational analysis; design 

analysis; spatial cognition; dimensionality reduction 

Subject classification codes: design analysis 

 

 

1. Introduction 

One of the questions that spatial psychologists and architectural designers 

repeatedly ask is, “why do people get lost in buildings” (Carlson et al. 2010; 284)? 

While many factors influence the answer to this question, it has been demonstrated that 



the quantity and quality of visual information that is available to a person, from a given 

location in space, is critical to the generation of coherent mental maps (Golledge 1999; 

Conroy-Dalton 2005). Moreover, this information is always relative, both within the 

immediate experience of a building or space, and in relation to the larger set of 

buildings of spaces that a person has experienced in their lives. Thus, a central property 

of spatial cognition is a capacity for identifying or expressing difference. This is why 

buildings and cities that possess relatively uniform or undifferentiated spatial properties 

are typically regarded as being both lacking in identity and being difficult to navigate 

around (Lynch 1960; Ellard 2009). Significantly, Carlson (et al. 2010) describes such 

spaces as promoting loss of orientation because they lack “salient landmarks” (287). 

However, locations with differing levels of spatial information, and especially those that 

possess a high level of contrasting geometric information have a propensity to be 

remembered as critical orientation sites (Conroy-Dalton 2001; Haq and Girotto 2003). 

Montello (1998) elaborates that such sites “serve important roles in the organization of 

spatial knowledge” (144), even though, they “do not in themselves contain spatial 

information” (144) that is useful; it is only through comparison with other information 

in the system that they became significant. Viewed in this way, questions about 

wayfinding and spatial identity in architecture could be regarded as relating directly to 

the presence, or absence, of salient features.  

Since the 1970s, architects, planners and urban designers have attempted to develop 

methods for the analysis of the visual properties of space that relate to mental maps and 

wayfinding (Meilinger et al. 2009). Many of these have relied on studies of human 

experience to produce results (Baskaya et al. 2004, Werner 2004, Wiener and Franz 

2005, Wiener et al. 2007). Interest in the geometric properties of vision, often 

formalized into a study of isovists properties (Benedikt 1979; Turner et al. 2001) also 



posed great potential for this field of research, but have not since been developed 

specifically to study issues of visual saliency. This is not surprising given that the 

accurate modeling and estimation of the degree of geometric visual character  – what 

might be called structural salience – is a challenging task. Several factors including 

isovist visibility, geometric shape, extent of visual area and the shape enclosed around 

the vantage point all need to be evaluated. Furthermore, accounting for these factors and 

comparing them over many hundreds of vantage locations can prove to be physically 

impossible and computationally intensive. Recent contributions in this field propose 

experimental methods employing human subjects to evaluate different vantage locations 

in virtual environments and provide subjective feedback (Caduff, & Timpf 2008; 

Duckham, et al. 2010; Han, et al. 2012; Hirtle 2008; Hochdorfer and Schlegel 2009; 

Miller and Carlson 2010; Peters et al. 2010; Röser et al. 2012a; Röser et al. 2012b; 

Winter et al. 2008). The nature of feedback varies from spatial descriptions (Miller & 

Carlson 2010), to choice of landmarks (Peters et al. 2010) and route descriptions (Röser 

et al. 2012). This paper approaches this complex issue by demonstrating a repeatable 

method for evaluating the wayfind-abilty of complex architectural and urban 

environments. Specifically, the paper proposes a computational methodology 

employing 3D isovists for determining structural salience. The application of 3D 

isovists is intended to imitate, as closely as possible, human visual perception. This 

property, in comparison to alternative social sciences approaches, has a potential 

universal application. It also ensures that the resolution of saliency is reliant on what is 

directly visible, rather than what could be inferred indirectly. It derives its theory and 

application from architectural science and computing and it depends on concepts 

derived from the field of computer science to evaluate overall features responsible for 

structural saliency.  



The experiments reported in the present paper demonstrate the application of a new 

saliency estimation method using hypothetical architectural models and two canonical 

house designs; the Villa Savoye at Poissy (near Paris, France) by Le Corbusier, and the 

Dana-Thomas House at Springfield (Illinois, USA) by Frank Lloyd Wright. These two 

designs have been chosen because they are both well known and extensively 

documented, and they also represent two contrasting architectural styles (respectively 

Functionalist Modernism and the Prairie Style). Because the focus of the paper is on 

developing a new method, these two designs are merely indicative of the potential of 

this approach and its capacity to work in different contexts; in the former case, the Villa 

Savoye, a stark, white, geometric composition, and in the latter, the Dana-Thomas 

house, a cruciform pavilion and courtyard plan. 

This paper is organised as follows: (a) Perception: describes methods of extracting 3D 

isovist from Google Sketchup models; (b) Data organisation: describes various 

techniques employed for organising the data into a workable form; (c) Saliency 

modelling: describes the underlying method of principal component analysis employed 

to extract inherent structural variation and options for comparison of the extracted 

information; (d) Experiments: describes different techniques of experimentation on the 

selected archetypal models and the most salient, and least salient regions identified for 

each; and finally, (e) discussion and conclusion are presented. This paper develops and 

expands on the methods and results recorded in previous research by the authors (Bhatia 

et al., 2012). 

Because the paper is largely concerned with methodological innovation and a 

demonstration, rather than a complete validation of an approach, there remain several 

facets that are unable to be developed in full in the present work. For example, while it 

might be useful to try to identify a “saliency scale” which has a more universal 



application, a much larger set of cases would need to be analysed before this could 

occur. Similarly, this paper cannot propose an ideal level of saliency for a designer to 

attempt to achieve, or a planner to attempt to legislate. The capacity to recognise and 

measure saliency is a sufficiently complex problem in itself, as too is the use of data 

derived from three-dimensional isovists, that such issues are outside the scope of the 

present paper.  

2. Perception 

Conceptually, an isovist is a way of representing the amount of space that is 

visible from a particular vantage point. It is a geometric, and thereby measurable, 

representation of the experience of human sight. However, in practice the “visible 

space” that the isovist records is typically approximated to a horizontal slice, taken 

parallel to the ground at eye-height, through the 3D visible volume  (Benedict 1979). 

Once the 2D isovist has been developed, then it is possible to quantitatively analyse its 

geometry to obtain various insights into the design properties of an architectural plan 

(Batty 2001; Turner et al. 2001). While 2D isovist analysis has dominated this field of 

inquiry, other researchers have set out to include the third dimension (Derix and 

Gamlesæter, 2008; Morello and Ratti, 2009; Bartie et al., 2010; Suleiman et al., 2011; 

Suleiman et al., 2013). Adding the third dimension poses particular challenges 

pertaining to the availability of stable and translatable 3D models and the requirement 

of a high level of computational power. Therefore, previous attempts to analyse 3D 

isovists have adapted GIS based systems to define a viewshed as the set of grid cells in 

a Digital Elevation Model (DEM) that can be seen from a vantage point using ray 

casting (Llobera 2003; Ratti 2005; Bartie et al., 2010; Suleiman et al., 2011; Suleiman 

et al., 2013). Such methods adapted approximate visibility analysis techniques to 

achieve computational efficiency. Other approaches to 3D isovist analysis include the 



development of a Spatial Openness Index (SOI); the ratio between the volume of the 

built structure and the area of the environment enveloping it (Fisher-Gewirtzman and 

Wagner 2003). Importantly, research employing 3D isovists, has recognised and 

asserted the utility of adding a third dimension for understanding visual perception and 

its effects (Derix and Gamlesæter, 2008; Morello and Ratti, 2009). Especially, for the 

purpose of analysing spatial identity and wayfind-ability, the 2D variation is too 

abstract; it is effectively missing a large amount of the spatial information that is critical 

for determining saliency. Thus, to ensure both the accuracy and the usefulness of the 

method the present paper uses a computationally efficient, holistic model of 3D isovist 

generation and analysis. While not the central outcome of the present paper, this is, in 

itself, a new technique that has not previously been used in architectural or urban 

analysis. 

2.1 Google Sketchup recording 

Despite the development of modern 3D visualization and design software, many 

of the standard CAD formats used in architectural practice are unusable for the purpose 

of generating isovists because they embed an excess of information into the geometric 

properties of the model. In response to this problem, the present research uses 

Sketchup’s (Trimble Sketchup 2012) 3D virtual walk simulation in combination with a 

customised Ruby script (Sketchup Ruby Scripts 2012) to extract 3D Isovists. In this way 

the user effectively “walks” through and thereby explores the model in a methodical 

way, while the Ruby script records a series of coordinates, which locate the user’s 

position along a path. Once the plan has been methodically investigated the recording is 

stopped and the collection of coordinates that have been visited are indexed. These 

indexed coordinates become the basis for the set of 3D isovist vantage points to be 

computed from the model. Figure 1 illustrates a set of adjacent frames recorded during 



the walk-through experience of a Sketchup model and an illustration of the path 

generated during the walk.  

--------------------------------------------------------------------------- 

Figure 1 comes here 

--------------------------------------------------------------------------- 

 

2.2 3D Isovist representation 

Capturing the geometrical abstractions of visible space in this paper is achieved 

by the use of traditional ray-casting techniques in 3D. Ray casting in this context refers 

to the general problem of determining the first object intersected by a ray, in common 

terms this process is sometimes known as ray-testing. To generate a 3D isovist, rays are 

projected from a fixed height ℎ at a vantage point index 𝑖 to cover the full 360° 

horizontal view orientation as well as a 0° to 180° vertical view orientation. The lengths 

of projected rays are represented as 𝑟!,!, the subscript 𝜃 and 𝜑 indicate the 

corresponding values of horizontal and vertical directions respectively. The complete 

set of these ray lengths is combined together to form one isovist dataset. In general, the 

existing methods of analysing 3D isovists would represent the entire space in the form 

of one such dataset. However, due to the fixed value of height at which the isovist is 

recorded, the dataset remains biased to represent the visual space, as seen by a person of 

height ℎ. To overcome this limitation, in the present research the ray projection is 

repeated at incremental height levels while maintaining the horizontal location of the 

vantage point. Thus, this method is akin to constructing a dense, vertically layered, 

series of three-dimensional isovists. The complete isovist dataset recorded at a vantage 

point can therefore be represented as 𝑟!,!,! where the additional subscript ℎ stands for 

height. Though other methods of information extraction, including direct mining from 



model data, are possible, the present variation of the traditional 3D ray casting approach 

more closely imitates the human experience of space. Additionally, it caters for 3D 

space that is visible to humans belonging to different height, age or mobility groups 

(from short to tall, from children to adults, from people in wheelchairs, to those in cars, 

trucks or buses) and thereby serves as a platform for future studies into the impact of 

architectural space on people with differing view positions.  

--------------------------------------------------------------------------- 

Figure 2 comes here 

--------------------------------------------------------------------------- 

 

2.3 Skechup isovist generation 

After the recording of vantage points, the customized Ruby script interacts with 

Sketchup via its Application Programming Interface (API), to examine the ray-testing 

operation at a specific direction and height. Sketchup in turn mines the model data, and 

provides the length of ray between the vantage point and the first object intersected by 

the ray. For the case when the ray encounters an opening such as a window or a door 

present in the model, there are two possibilities: (i) the ray should pass through the 

opening and reach out to a maximum fixed value; (ii) the ray should stop at the opening 

and remain within the boundaries of the enclosed environment. For the present research 

the former interpretation is described as Fixed Length Isovists (FLIs) and the latter as 

Boundary Length Isovist (BLIs). Figure 2 illustrates the difference in method of 3D 

isovist generation for the two cases of BLI and FLIs. Depending on the location of the 

building under consideration, the view of the outside world could contribute as an 

attractive spot, or be accounted for as an area that does not offer much privacy. In this 



study, we compare and contrast the impact on structural variability by the choice 

between FLI and BLIs.  

--------------------------------------------------------------------------- 

Figure 3 comes here 

--------------------------------------------------------------------------- 

-------------------------------------------------------- 

Table 1 comes here 

-------------------------------------------------------- 

2.4 Isovist data visualization 

Recording isovists at multiple heights, apart from capturing different viewpoints of 

visible space, also provides a significant amount of co-related information by producing 

approximately 6.5 x 105 ray lengths per vantage point. To obtain meaningful insights 

from this data it is important to isolate the co-related repetitive information and retain 

essential summaries. In the present research, these summaries are obtained by 

transforming the original isovist dataset into its statistical derivatives.  Considering the 

original dataset containing ray lengths 𝑟!,!,!, statistical summaries of  𝑟 can be obtained 

over one of 𝜃, 𝜑, or ℎ. Depending on the nature of statistic used (mean, variance, 

maximum, minimum and like), the original dataset can be translated to provide different 

insights into the spatial structure. Each of these summaries are represented as 𝑍!"#, 

𝑍!"#, 𝑍!"#. Mathematically as an example summarised over 𝜑, 

𝑍!"#
! = {𝑚𝑎𝑥!  𝑟!,!,!:  ℎ ∈ [ℎ!"#, ℎ!"#],𝜃 ∈ 0,360 ,𝜑 ∈ 0,180 } represents the set of 

all longest ray lengths recorded in each horizontal direction and at each height. In other 

words, 𝑍!"#
!  represents an isovist comprising maximal visibility ray lengths. Various Z 

statistics along with their interpretations are provided in Table 1. Apart from providing 



useful insights into the structure, each of the Z statistics can be visualized for each 

height separately, or collectively for all heights in the form of a heatmap. A heatmap is 

a graphical representation of data present in a 2D matrix, generated by assigning a 

colour to each data value present in the matrix. Visualising for each height level, Figure 

3 represents 𝑍!"# and 𝑍!"#$ (ordinate) of a BLI and a FLI, observed at a fixed height 

level as opposed to horizontal direction between 0 and 360 degrees (abscissa). The plots 

demonstrate the changes observed when visualising the same area, but from different 

polar angle orientations. The current plot has limited usage as the height is fixed. 

Visualising all heights collectively can be done using a heatmap matrix where each 

cell/pixel/unit of the matrix corresponds to one colour in the map. The rows of matrix 

represent different heights, and the columns correspond to different azimuthal 

directions. Figure 4 presents a heat map for 𝑍!"# computed on corresponding FLI and 

BLI along with the associated view from the vantage point in the model. The colour-bar 

provided on the right side of the figure demonstrates the scale of variations of 𝑍!"# 

values presented by the heatmap. 

-------------------------------------------------------------------------- 

Figure 4 comes here 

--------------------------------------------------------------------------- 

3. Saliency Estimation 

The proposed method for detecting salient regions is based on the technique of 

Principal Component Analysis (PCA) (Jolliffe 2002). PCA is a mathematical procedure 

that transforms observed high dimensional data to a low dimensional set of 

observations, while retaining maximum information. The process involving PCA 

identifies the data values that have a high level of correlation, and removes them. As a 

result, only the most relevant observations are retained. The transformed low 



dimensional data is in the form of one or more low-dimensional vectors known as 

Principal Components. The principal component vectors are linearly independent, and 

are considered as a concise summary of the high dimensional dataset from which they 

are obtained. Through the application of PCA on the heatmap data, a compact set of 

these linearly uncorrelated vectors or principal components are obtained. Principal 

vectors, being concise identifiers/descriptors of the heatmaps of different vantage point 

locations, are compared to identify the ones that are salient. The rest of this section 

details the procedure of extracting principal components, measures of saliency, and 

methods of comparison. 

--------------------------------------------------------------------------- 

Figure 5 comes here 

--------------------------------------------------------------------------- 

3.1 Principal Component Analysis 

𝑍!"#
!  Heatmap is a visual representation of the set 𝑍!"#

! . Each pixel in the heatmap is 

indexed by the heights and the horizontal direction at which each entry in 𝑍!"#
!  is 

computed. By the process of isovist generation, it is common to have similar values of 

ray lengths corresponding to adjacent horizontal directions of projection. This 

redundancy not only adds insignificant dimensions to the data, but also makes the data 

difficult to compare. Thus, PCA is used here for extracting significant data from the 

heatmap. Principal components extracted via PCA contain significant information 

present in the original heatmap. The effect of applying PCA on the heatmap can be 

visualised in Figure 5. The original heatmap, comprising 360 columns (one for each 

direction) is reduced to n columns (n << 360). The quantity n  is the number of principal 

components that are extracted, which may be different for each heatmap. For complex 

heatmaps that contain a large amount of uncorrelated information, the value of n would 



be higher and vice versa. These n column vectors are sufficient to categorize a heatmap 

and compare it with other heatmaps. The process of computing these principal 

components involves extraction of eigenvalues and eigenvectors of the covariance 

matrix of the given heatmap. A total of 360 eigenvectors are extracted from the 

covariance matrix. Each eigenvector has a set percentage contribution towards the total 

information contained in the heatmap. These percentage contributions are computed by 

evaluating their respective eigenvalues. Let 𝜆! represent the eigenvalue corresponding to 

ith eigenvector, and let Λ =   𝜆! + 𝜆! +⋯+ 𝜆!"#. Then the percentage contribution 

𝑃! = (𝜆!×100) Λ. Using the values of 𝑃! vectors that describe at least 95% of the total 

uncorrelated information are selected. In combination, the extracted set of these vectors 

form a Principal Component Subspace, or simply subspace. This subspace essentially 

provides a low-dimensional set of basis vectors onto which the original heatmap dataset 

is projected. The new reduced dataset obtained by this projection of original data onto 

its principal subspace is termed as “scores”. Each of these subspaces and scores are then 

evaluated using the stated saliency measures described in the next section. Readers 

interested in detailed process of performing PCA are advised to refer to Jolliffe (2002). 

3.2 Saliency Metric 

The saliency metrics used in this paper examine the difference between two principal 

component scores. As a result, each measure stipulates a number between zero and one, 

wherein zero denotes minimum difference and one denotes a completely different score 

and hence a different heatmap. The comparison reveals the extent to which one heatmap 

(and hence one location) is different from others, thereby suggesting a method for 

identifying the location that is most different from all others in a given set.  

Consider two vantage point indices G and H. Post PCA computation, for each location 



its corresponding scores are available. Let L and M be the corresponding score for 

vantage points G and H. Let L and M contain i and j column vectors, respectively. 

Based on this indexing, we define two saliency metrics: (i) Angle between subspaces 

(ii) Entropy of subspace. Each metric is computed independent of the other, and finally 

combined and normalised to obtain an overall account of inherent saliency. 

3.2.1 Angle between subspaces 

The first saliency measure employed in this paper compares the angle between these 

two subspaces. It is derived from the similarity factor defined by Krzanowski (1979) 

who developed a method to measure the similarity between two principal component 

subspaces. For the present application, the complement of this measure was used to 

quantify the difference between two scores L and M; a difference denoted as SGH. The 

subscripts G and H denote the indices of the associated vantage points. Originally, 

similarities between subspaces were defined, following Krzanowski (1979) as: 

Similarity = trace(LTMMTL)/k. The superscript T represents transpose. In this definition, 

is it assumed that both L and M have the same number of column vectors viz. k. For our 

application, this definition is modified to allow them to have different numbers of 

column vectors. Let 𝐾 = (𝑖 + 𝑗)/2, the saliency measure, SGH, is then computed as the 

inverse of the similarity, defined in equation 1. 

𝑆!" =
𝐾

𝑡𝑟𝑎𝑐𝑒 𝐿!𝑀𝑀!𝐿                                                                                                              1  

3.2.2 Entropy of subspace 

Entropy (Shannon 1948) provides an account of the informative content of a dataset. 

The second measure of saliency used in this work is defined using the entropy of the 

scores. Consider, for example, a heat map matrix for an isovist at vantage point index G, 



and its corresponding score matrix L, obtained after PCA. Let the score matrix consist 

of i column vectors. Entropy is calculated on the histogram of the values in each column 

vector of L. The histogram divides the entire range of values in suitable equal size 

intervals, and counts the number of values present in each interval. The entropy value is 

then computed on the counts present in each histogram interval. Thus, let 𝑝! represent 

the ith interval, and let 𝑚 be the total number of intervals present, then the entropy EG 

for the isovist at G is defined in equation 2. The values of EG are scaled between zero 

and one. The higher EG value for a vantage point index reveals higher uniqueness of 

that location in comparison to others being considered for comparison.  

𝐸! = − 𝑝! . log 𝑝!                                                                                                                                 (2)
!

!!!

 

4. Experiments and Results 

4.1 Experimental Setup  

This section describes the experimental setup used to compare salient regions 

present in the Villa Savoye and Dana-Thomas House models using the previously 

presented methods. Each model was explored using the Google Sketchup walk tool, and 

the additional script was used to record vantage points and generate BLI and FLIs. To 

ensure non-redundancy, a minimum distance of 1 meter was obtained between two 

horizontal vantage point locations. The spatial coordinates recorded during the walk 

performed comprise a series of ordered vantage point coordinates. These vantage point 

coordinates were indexed for easy reference, and corresponding to each index, the 

isovist matrix, 𝑍!"#
! , its heatmap and finally the principal component scores were 

computed. Therefore, to address a vantage point, its associated view and data, its index 

was used and a correspondence between the index and vantage point location was 



maintained together in a set labelled as ∑.  The given setup presented two choices of 

analysis: (i) Comparison between one location to all other locations in the entire model, 

we call this Global Saliency; (ii) Subdivision of the entire model into smaller regions, 

followed by comparison of a location in a selected region with all other locations within 

the same region, termed as Local Saliency.  We adopt the term “location” as the area 

associated with one recorded vantage point, and the term “region” as a collection of 

neighbouring n locations. As an example, local saliency computed on a dataset 

containing 50 “neighbouring” vantage points can be used to identify the most salient 

location in the small region of the environment.  

4.2 Computation 

Sketchup models of the Dana-Thomas House and the Villa Savoye were used to record 

a total of 300 vantage points covering the entirety of each model. Local saliency was 

computed over two different experiments. First, by distributing the 300 points into three 

regions each containing 100 locations. Second by distributing into six regions each 

containing 50 locations. The saliency computation was performed taking one region at a 

time. Conversely, global saliency was computed over the entire dataset considering one 

location at a time. The dataset was generated on a Windows-based desktop PC with 16-

GB RAM, and equipped with Intel Core i7 processor, running Sketchup and the 

additional Ruby plugin. Final computations of principal components and salient regions 

were performed in MATLABTM R2011. The generation of isovists at each height level 

in Sketchup took an average of one minute per vantage point. MATLABTM scripts for 

computation of principal components (including importing data, computation and 

saving the principal components) took an average of seven seconds per vantage point.  



4.3 Global Saliency Results 

Evaluation of global saliency in the present analysis can be interpreted over different 

types of heatmaps (Table 1). To illustrate their utility and differences, global saliency 

computation was performed over 𝑍!"#
!  and 𝑍!"#$

!  heatmaps. The results are presented in 

Figure 6. The first part of the Figure 6(a) illustrates the combined saliency value 

corresponding to each vantage point location index. The graphs compare the global 

saliency values, obtained for BLI and FLIs for the Villa-Savoye and the Dana-Thomas 

House using 𝑍!"#
!  and 𝑍!"#$

! . The vantage point locations having highest (green 

marker) and lowest saliency (red marker) values are illustrated. Saliency values were 

found to be different in BLIs and FLIs for locations with openings (such as doors). This 

is due to the incorporation of variability present in area visible from any window or 

opening of the model in the case of FLIs. Corresponding views for the 4 most extreme 

saliency values (highest 4, and lowest 4) are presented in Figure 6(b). Through this 

process 𝑍!"#
!  heatmaps revealed locations with maximum/minimum variance of 

structure, while use of 𝑍!"#$
!  heatmap revealed locations with maximum/minimum 

visibility from vantage point.  

--------------------------------------------------------------------------- 

Figure 6 comes here 

--------------------------------------------------------------------------- 

In the Villa-Savoye model, the terrace with clear views of the spiral staircase and the 

inclined ramp was identified to be the most salient region using BLI. The identified 

least salient region was the passage between two rooms comprising of parallel walls and 

with no variability in its spatial structure. Wright’s Dana-Thomas House has a complex, 

cruciform plan, with several well-defined exterior courtyard spaces, which have 

generated some of the most salient views. Of the interior spaces, both the private living 



room and the grand dining room offer high levels of spatial difference. There are 

multiple corridors linking these major spaces, along with several exterior walls to 

service areas, which all have low levels of saliency. 

 4.4 Local Saliency Results 

Performing saliency evaluation on a small cluster of all neighboring vantage points is 

instrumental in identifying the salient locations present within a small region of the 

entire environment. Figure 7 illustrates the results of two local saliency experiments. 

First by clustering 100 vantage points in a region, and second by clustering 50 vantage 

points. The analysis was performed on 𝑍!"#
!  heatmaps for Villa-Savoye and Dana-

Thomas house. Figure 7(a) consists of 6 graphs (3 for each model), and 7(b) of 12 

graphs (6 for each model). The graphs represent saliency values (ordinate) of vantage 

point index (abscissa) relative to all neighboring locations in the region. From the 

graphs it can be observed that the number of locally salient regions were higher in 

number when comparing 100 vantage points at a time.  

--------------------------------------------------------------------------- 

Figure 7 comes here 

--------------------------------------------------------------------------- 

5. Conclusion 

When Lynch (1960) famously demonstrated that humans construct their 

understanding of complex spaces using particular sets of visual cues (including 

landmarks and boundaries), he effectively revolutionised the way architects and urban 

designers thought about spatial identity. He also postulated various conditions under 

which a person is more or less likely to be lost when navigating across a city, or 

experiencing a large building for the first time. While many studies have since 



reinforced the importance of Lynch’s insights, practical applications to model, analyse 

of optimise architecture to accommodate such ideas have not yet been developed. With 

the rise in importance of computational modelling (CAD, BIM, parametric and 

generative models) for both the design and analysis of space, there is a growing need for 

systems or approaches that can support a heightened understanding of existing 

environments and an improved capacity to design new ones. While the present study 

cannot yet reach that level of useability, it offers an important first step, by 

demonstrating a new, stable and repeatable process for generating 3D isovists to provide 

a unique methodology for measuring visual salience in an architectural environment. 

Using a statistical approach to processing data obtained from different sections of an 

architectural model, the paper compares this data using PCA and entropy to reveal 

differences in spatial structure of each section. This process is then used to measure 

relative saliency; the capacity for the view from a particular position to differ from that 

of the rest of the location. This new methodology is capable of being altered in multiple 

ways although the variation demonstrated using isovist ray lengths produces consistent 

and useful results. Future developments of this research will consider the inclusion of 

colour variations along with a version of the pure geometrical methodology for saliency 

computation. 

Finally, while neither comprehensive nor specifically for this purpose, the results of the 

saliency analysis of the Villa Savoye do broadly correlate with several previous 

interpretations of the spatial identity of this building. Such readings suggest that certain 

elements, like the spiral staircase and the roof terrace contain a high level of specific 

spatial information and are thus salient or landmark locations, while others are more 

uniform or undifferentiated (Figure 6(b)). In the case of the Dana-Thomas House, 

Hildebrand (1991) argues that Frank Lloyd Wright’s domestic architecture often 



possesses a pattern of discovery that draws a visitor from the entry to the living room, 

gradually revealing the spatial particularities of the design. The saliency results for the 

Dana-Thomas House broadly support this theory, but without a more detailed analysis, 

it is difficult to draw particular conclusions about this house or wayfinding and Wright’s 

Usonian architecture.  
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Z Interpretation 

𝑍!"#
! , 𝑍!"#

! , 𝑍!"##
!  Maximum, minimum and difference (max – min) in 

visibility over θ , φ and h measured for each azimuthal 
direction, for all heights. 

𝑍!"#$
! , 𝑍!"#

!  Mean and variance in visibility in over θ , φ and h 
measured at different heights.  

𝑍!"#! , 𝑍!"#! , 𝑍!"##!  Maximum, minimum and difference (max – min) in 
visibility over θ , φ and h measured for each azimuthal 
and polar directions.  

𝑍!"#$! , 𝑍!"#!  Mean and variance in visibility over θ , φ and h measured 
for each azimuthal and polar directions. 

Table 1. Various Z statistics that can be obtained over 𝑟!,!,!, and their interpretations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Path generated during Sketchup walk (left); A small subset of adjacent frames 

recorded during the walk (right). 

 

 

 

 

 

Figure 2. Illustration of how the ray projection is handled during the generation of 

isovists for the two cases of BLI (left), FLI (right). FLIs being of fixed length (which is 

usually chosen as a large value) tend to travel beyond any present openings.  

 

 

 



 

Figure 3. 𝑍!"# and 𝑍!"#$ (ordinate) computed for a fixed height level vs. horizontal 

direction between 0 and 360 degrees (abscissa) for a BLI (left) and FLI (right). As 

evident, the  𝑍!"# values are higher than those of 𝑍!"#$. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4. Heat map for 𝑍!"# computed on corresponding BLI (left) and FLI (right) 

along with the associated views from the vantage point in the model (bottom row). As 

FLI isovist rays are allowed to pass through the windows or openings, they are typically 

longer. This can be observed by comparing the two heatmaps, where FLI heatmap 

shows more colour variation corresponding to longer ray lengths.   

 

 

 

 

 

 

 

 



 

Figure 5. Effect of applying PCA (left), demo transformation of a heatmap matrix into 

its principal component scores. The original heatmap/matrix comprising of 360 columns 

is reduced to a 4-column heatmap/matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

(a) 
 

 
 

(b) 
Figure 6. Global saliency values for Villa-Savoye and Dana-Thomas house computed 

using 𝑍!"#
!  (6a top row) and 𝑍!"#$

!  (6a bottom row) heatmaps, with corresponding 

views of locations with highest and lowest saliency values in 6b. The number of peaks 

indicates the presence of many salient locations in the corresponding environments.  
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Figure 7. Local saliency values computed over BLIs using 𝑍!"#
!  heatmaps, illustrating 

uniqueness of corresponding vantage point locations relative to the others in the entire 
region (comprising neighbouring 100 locations in 7a, and 50 locations in 7b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


